Morphable Displacement Field Based Image Matching for Face Recognition across Pose

نویسندگان

  • Shaoxin Li
  • Xin Liu
  • Xiujuan Chai
  • Haihong Zhang
  • Shihong Lao
  • Shiguang Shan
چکیده

Fully automatic Face Recognition Across Pose (FRAP) is one of the most desirable techniques, however, also one of the most challenging tasks in face recognition field. Matching a pair of face images in different poses can be converted into matching their pixels corresponding to the same semantic facial point. Following this idea, given two images G and P in different poses, we propose a novel method, named Morphable Displacement Field (MDF), to match G with P ’s virtual view under G’s pose. By formulating MDF as a convex combination of a number of template displacement fields generated from a 3D face database, our model satisfies both global conformity and local consistency. We further present an approximate but effective solution of the proposed MDF model, named implicit Morphable Displacement Field (iMDF), which synthesizes virtual view implicitly via an MDF by minimizing matching residual. This formulation not only avoids intractable optimization of the high-dimensional displacement field but also facilitates a constrained quadratic optimization. The proposed method can work well even when only 2 facial landmarks are labeled, which makes it especially suitable for fully automatic FRAP system. Extensive evaluations on FERET, PIE and Multi-PIE databases show considerable improvement over state-ofthe-art FRAP algorithms in both semi-automatic and fully automatic evaluation protocols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Using Component-Based SVM Classification and Morphable Models

We present a novel approach to pose and illumination invariant face recognition that combines two recent advances in the computer vision field: component-based recognition and 3D morphable models. In a first step a 3D morphable model is used to generate 3D face models from only two input images from each person in the training database. By rendering the 3D models under varying pose and illumina...

متن کامل

Face Recognition with Support Vector Machines and 3D Head Models

We present a novel approach to view and pose invariant face recognition that combines two recent advances in the computer vision field: component-based recognition and 3D morphable models. In a first step a 3D morphable model is used to generate 3D face models from only two input images from each person in the training database. By rendering the 3D models under varying pose and illumination con...

متن کامل

Face Recognition Based on Fitting a 3D Morphable Model

This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single image...

متن کامل

3D Face Modeling based on 3D Dense Morphable Face Shape Model

Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense mor...

متن کامل

A Multiresolution 3D Morphable Face Model and Fitting Framework

3D Morphable Face Models are a powerful tool in computer vision. They consist of a PCA model of face shape and colour information and allow to reconstruct a 3D face from a single 2D image. 3D Morphable Face Models are used for 3D head pose estimation, face analysis, face recognition, and, more recently, facial landmark detection and tracking. However, they are not as widely used as 2D methods t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012